New results on the existence of periodic solutions to a p-Laplacian differential equation with a deviating argument
نویسندگان
چکیده
منابع مشابه
Periodic Solutions for p-Laplacian Liénard Equation with a Deviating Argument
By employing Mawhin’s continuation theorem, the existence of periodic solutions of the p-Laplacian Liénard equation with a deviating argument (φp(x′(t)))′ + f(x(t))x′(t) + g(x(t− τ(t))) = e(t) under various assumptions are obtained. Keywords—periodic solution, Mawhin’s continuation theorem, deviating argument.
متن کاملExistence and uniqueness of periodic solutions for a kind of Liénard equation with a deviating argument
In this work, we use the coincidence degree theory to establish new results on the existence and uniqueness of T -periodic solutions for a kind of Liénard equation with a deviating argument of the form x (t)+ f (x(t))x (t)+ g(t, x(t − τ(t))) = p(t). c © 2007 Elsevier Ltd. All rights reserved.
متن کاملPeriodic solutions for p-Laplacian neutral functional differential equation with deviating arguments ✩
By using the theory of coincidence degree, we study a kind of periodic solutions to p-Laplacian neutral functional differential equation with deviating arguments such as (φp(x(t) − cx(t − σ))′)′ + g(t, x(t − τ (t)))= p(t), a result on the existence of periodic solutions is obtained. © 2006 Elsevier Inc. All rights reserved.
متن کاملPeriodic Solutions for p-Laplacian Differential Equation With Multiple Deviating Arguments
By employing Mawhin’s continuation theorem, the existence of periodic solutions of the p-Laplacian differential equation with multiple deviating arguments (φp(x′(t)))′ + f(x(t))x′(t) + n ∑ j=1 βj(t)g(x(t− γj(t))) = e(t) under various assumptions are obtained. Keywords—periodic solution, Mawhin’s continuation theorem, deviating argument.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.03.032